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Modes of Propagation in a Coaxial Waveguide
with Lossless Reactive Guiding Surfaces
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AND R. MADHAVAN

Abstract—An analysis of the modes that can propagate in a co-
axial waveguide with lossless reactive guiding surfaces is presented.
The cases where both the surfaces are either inductive or capacitive
and the case where one of the surfaces is capacitive and the other is
inductive are discussed. The results show that, in general, there are
two surface waves and an infinite number of waveguide modes.
‘Whereas all the waveguide modes show the cut off phenomenon, the
surface waves may either propagate down to zero frequency or get
transformed into the lowest order waveguide mode at certain critical
frequencies determined by the structure parameters.

I. INTRODUCTION

FTER Barlow’s suggestion of screening a surface
A waveguide [1]-[3], the first systematic study of
the modes existing in a parallel-plate waveguide
with inductive surfaces was made by Wait [4]. This was
extended by Arora and Vijayaraghavan [5] to cover the
cases where the supporting surfaces are both capacitive
or where one of them is inductive and the other is
capacitive. The present investigation of the modes of
propagation in a coaxial waveguide is similar to the one
already carried out for the parallel-plate waveguide and
covers identical guide-surface reactance possibilities.

It is well known that a thin coating of dielectric on a
conductor enhances the inductive reactance, and several
practical arrangements have been discussed by Barlow
[2], [3]. However, realization of a capacitive reactance
is less straightforward as such surfaces need thicker
dielectric coatings. Besides, the capacitive reactance
depends more strongly on the type of field that exists
over the surface. Despite these limitations, the concept
of surface impedance has proved to be a very useful one
and is widely used in the literature. In the analysis to
follow, it is assumed for simplicity that any desired
reactance, inductive or capacitive, can be realized, the
means of realization being secondary, and that the
reactance is constant whatever be the propagating mode
or modes.
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II. MopAL ANALYSIS

Consider an infinite coaxial waveguide with its axis
aligned along the 2 axis of the circular cylindrical co-
ordinate system defined by the coordinates 7, 8, 3. The
inner and outer guiding surfaces are r=¢ and =25 with
surface impedances Z, and Zy, respectively. The analysis
will be restricted to axially symmetric modes propagat-
ing along the positive g direction. Asymmetric modes
can, of course, be excited, but such modes are of the
hybrid type and there are added complexities in their
analysis. In particular, hybrid modes require the specifi-
cation of two values of surface reactance for each sur-
face [6]. In view of these complexities, such modes will
not be considered here but will form the subject of a
subsequent study. In the analysis to follow, a time de-
pendence of the form e*? will be implicit.

Consider first TM modes having field components E,,
Hy, E,, of which the components E, and E, can be ex-
pressed in terms of Hy by the equations

E, = (1/jwer)d(rHs)/dr
E, = —(1/jwe))0H,/dz (1)
while Hj itself can be determined by solving the wave
equation
02H, 1 0Hy 02H, 1
- + + (k2 — —)Hs=0 (2)
ar’ 7 dr % 72
subject to the boundary conditions
E./Hy = Z,, atr = a
E,/Hy = —Z», atr = b. (3)

In (2), ke = ?uee.
The solution of (2) may be expressed in a series form
comprising all the possible modes of propagation:

Hy = Z [Anll(un") —+ BnKl(unr)]e—jﬂnz (4)

n

where 4, and B, are hitherto undetermined amplitude
constants, I; and K; denote modified Bessel functions of
the first order, B, is the longitudinal phase constant, and
#, is the transverse propagation constant related to 8,

by the equation #,=+/B,2—k¢% Real values of u,
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specify surface wave modes and their imaginary values
the waveguide modes.

Relations (4), (1), and (3), when combined, restrict
H, to the form

Hy= ) A, |:I1(unr)

unlo(una) - jweoZafl(una)
K o(40) 4 jweoZ oK 1(n,a)

K 1(%#)] ¢~#nz (5)

with #, determined by the characteristic equation

) Ki(u,a) ) Ii{au,a)

Un T joeoelo ——— U, + jwegly ————
Ko(%nd) Io((x%nd)

. I1(%,a) ] Ki(au,a)

Uy — JWeglg ———— Uy — Jweplp ———
To(una) Kolan,a)

Io(una) Ko(atna) ©
T ola,a) K o(una)

in which a=25/a, the ratio of the radii.

In a similar way it may be shown that the E; com-
ponent of a TE field (components E¢, H,, H,) in the
same structure can be expressed in a series form identi-
cal with that in (5), with €Z, replaced by 1/u¢Z, and
€0Zs by 1/ueZs. The characteristic equation for this case
is obtained from (6) by making the same substitutions
therein.

A. Inductively Reactive Surfaces

1) Transverse Magnetic Modes: Let the guiding sur-
faces be inductively reactive with Z,=3jX,, Z,=3jX, and
X4, Xp>0. Then (6) becomes

U_ p K.(U) _ Il)
K(U) Io(al) _ I(U) Kolal) ko
U4 p I,(U) U4 QKl(OtU) Io(aU) KoU)
I(U) Ko(al)

where U=u,0, P=weX,0, and Q=weXa (all dimen-
sionless quantities). Real roots of (7) signify surface
wave modes and the imaginary roots the waveguide
modes.

Consider, first, the real roots of the equation. From
comparison with the corresponding parallel-plate prob-
lem [5], it may be anticipated that this equation would
have two nontrivial real roots. A detailed graphical and
numerical analysis [7] shows that this indeed is so and
that one of these roots vanishes when the quantity P is
decreased below a certain critical value governed by the
ratio Q/P, indicating that the corresponding wave,
hereafter called type I surface wave, loses its surface
wave character at that critical value of P. The other
root, however, remains nonzero for all P except P=0
when it vanishes revealing that the surface wave mode,
to be called type II hereafter, cannot be supported by a
guide with perfectly conducting guide walls.
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The critical value of P for a given Q/P ratio, at which
the type I wave loses its surface wave character, can be
easily deduced from the characteristic equation (7) by
making U approach zero. This yields the condition

2 ey (®)
7 0 =3 o .

To find the imaginary roots of (7), set U=3;V. On this

substitution, (7) takes the form

VIo(V) + PTi(V) _ VIseV) = QNr(aV)
VNo(V) + PNy(V)  VNo(aV) — QN:y(aV)

9

This equation is found to have an infinite number of
roots corresponding to an infinity of waveguide modes.
Of all these, the one that is found to merit attention is
the lowest order root, specifying, what is to be called in
future, the zero-order waveguide mode. This root is
found to vanish as the quantity P is increased above a
certain critical value. This critical condition, which may
be deduced by letting V tend to zero in (9), is found to
be the same as (8). The obvious conclusion to be drawn
is that this critical condition marks the transition be-
tween the surface wave mode of type I and the zero-
order waveguide mode.

Taking =2 as a typical value, (7) and (9) were
solved on the computer for the two real roots and the
lowest imaginary root in the range 0 < V <= for various
values of P, with Q/P as a parameter. From the com-
puted values of the real roots, the dispersion curves
(Ba versus ka) are plotted for the two surface waves in
Figs. 1 and 2, taking X.,=+/u¢/€o, the characteristic
impedance of free space. This choice of X, makes
P=Fka, and Bo is found through the relation S
=~/ V24 (ka)®.

Fig. 1 shows the dispersion curves of the surface wave
of type I (continuous lines) for various (/P ratios. The
curves are found to terminate on the line Ba=ka or
when U becomes zero. The dotted lines are the disper-
sion curves for the zero-order waveguide mode obtained
from the roots of (9). Fig. 1 clearly shows the smooth
transition of the type I surface wave into the zero-order
waveguide mode at the critical frequencies determined
by the intersections of the Be=ka line with the dis-
persion curves. The points where the dotted curves
intersect the ke axis give the cutoff frequencies for the
zero-order mode. Fig. 2 displays the dispersion curves
for the surface wave mode of type II, showing that this
mode propagates down to zero frequency, unlike the
type I mode.

2) Transverse Eleciric Modes: An analysis of the char-
acteristic equation for TE modes (refer to (6) and the
following paragraph) reveals that the structure cannot
support TE surface waves but can support an infinity of
TE waveguide modes, all exhibiting the cutoff phe-
nomenon. ‘

In practice, then, choosing an excitation to generate
only TM modes at a frequency such as to make the
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Fig. 1. Dispersion curves for type I surface wave mode (continuous
lines) and zero-order waveguide mode (dotted lines) for

Xo = (uo/eo)V? and different ratios Q/P.

surface wave of type I critical and proportioning the
guide so that all waveguide modes are cut off, one can
make only the type II surface wave mode propagate
without resorting to any special artifice for effecting
mode purity. This mode is the same as the hybrid TEM
wave of Barlow. Similar results were obtained for the
parallel-plate waveguide [5].

B. Capacitively Reactive Surfaces

The results for the case when both surfaces are capaci-
tive are readily deduced from those for the case of induc-
tively reactive surfaces by applying the duality princi-
ple. It suffices to say that two TE surface waves and an
infinity of TE and TM waveguide modes exist and one
of the surface waves transforms with the zero-order TE
waveguide mode at a certain critical frequency deter-
mined by a relation analogous to (8).

C. One Surface Inductive and the Other Capacitive

The modal analysis for this case of oppositely reactive
guiding surfaces proceeds on the same lines as in the case
of inductively reactive surfaces. It is sufficient to men-
tion only the results of such an analysis [7].

At the outset one sees two possibilities, the first one
where the inner surface is inductive and the outer
capacitive and the second one where the inner surface is
capacitive and the outer inductive.

1) Inner Surface Inductive and Outer Surface Capaci-
tive: When the surface r=a has an inductive reactance
X. and the surface # =5 a capacitive reactance — X3, one
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Fig. 2. Dispersion curves for type 11 surface wave mode

for Xu = (uo/e)® and different ratios Q/P.

TM and one TE surface wave can exist along with an
infinite number of TM and TE waveguide modes.

The TM surface wave propagates when 1/P—a/Q
<(a®—1)/2 and goes over into the zero-order TM wave-
guide mode when 1/P—a/Q>(a2—1)/2, where P
=weeX 0 and Q =weXwe as before.

For TE modes the corresponding transition occurs
when a/Q'—1/P'=(a2—1)/2, where P’ =wua/X, and
Q' =wuoee/Xs. The mode has surface wave or waveguide
character depending, respectively, on whether «/Q’
—1/P’ is less than or greater than (a?—1)/2.

It may be noted that when Q/P <« for the TM case
or when Q'/P'<a for the TE case, the corresponding
surface wave modes do not become critical. The TM
surface wave gets associated with the inductive surface
and the TE wave with the capacitive surface.

Fig. 3 shows the dispersion curve for the TM surface
wave in the structure. The figure clearly brings into
focus the critical behavior of the surface wave, and
especially the fact that the mode goes critical only for
Q/P >« (a=2 for the calculations). As before, the inter-
section of the Ba==ka line with a dispersion curve gives
the critical frequency.

2) Inner Surface Capacitive and Quter Surface Induc-
ttwe: The results for this case follow from those derived
for the case discussed before through an application of
the duality principle. Accordingly, a TM surface wave
exists for a/P—1/Q<(a?—1)/2 and goes into the wave
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Fig. 3. Dispersion curves for TM surface wave mode (continuous
lines) and zero-order waveguide mode (dotted lines) for

Xo=(uo/e0)'? and different ratios Q/P when inner surface is
inductive and outer surface capacitive.

guide mode when the left-hand side of the inequality
exceeds the right-hand side. Similarly a TE surface
wave exists for 1/P'—a/Q'<(a?2—1)/2 and goes over
into a TE waveguide mode when the left-hand side ex-
ceeds the right-hand side. The surface waves do not be-
come critical for Q/P>a (TM case) or Q//P'>a (TE
case). Fig. 4 shows the dispersion curves of a TM sur-
face wave for this case and illustrates the fact that the
wave goes critical for Q/P<a=2.

III. SurRrFACE WAVE FIELD PATTERNS FOR
INDUCTIVELY REACTIVE SURFACES

The electric field patterns in the 6=constant plane
can be computed by solving the differential equation

Re (E.) dz
Re (E,) T dr

. (10)

From (5) and (1), the E, and E. components associated
with the two surface waves may be stated in the general
forms

Au

o = —— [To(ur) + CKo(ur)]e= (11a)
Jwep

E, = A8 [7:(ur) — CKy(ur)lee (11b)

weéqg
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Fig. 4. Dispersion curves for TM surface wave mode (continu-
ous lines) and zero-order waveguide mode (dotted lines) for
X, = (uo/eo)? and different ratios Q/P when inner surface is
capacitive and outer surface inductive.

where 4 is an amplitude constant and
UI(U) + PI(U)

T —UK(0) + PELU)

with the appropriate value of . Substituting (11) into

(10) and integrating, one obtains the expression for the
field lines in the # = constant plane:

wr[I1(ur) — CKy(ur)] sin Bz = constant,

(11¢)

(12)

The individual patterns for the type I and type II
waves are obtained by substituting the appropriate
eigenvalues in (12).

For the type I wave (designated by subscript 1), one
finds that the E, component is a maximum at a surface
r =my for which

Iy(uymy)

N Ky(uymy) ' 2

C = Cl
Fig. 5 shows the type I wave field which is seen to
bear a close resemblance to the lowest order TM mode
in a conventional coaxial waveguide with perfectly
conducting walls,
For the type II wave (designated by subscript 2),
E,=0 at a surface r =m, for which

Io<u2m2)

_— 14
Ko(ugms) s

C=Cz=

Fig. 6 shows the field pattern for this wave and one
observes that this mode is nothing but the hybrid TEM
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Fig. 5. Electric field pattern for type I surface wave mode.

wave of Barlow. In fact, one can trace the transition of
the surface wave mode of type I into the lowest order
TM waveguide mode and that of the type II surface
wave mode into the TEM wave of a coaxial guide with
perfectly conducting walls as the surface reactances are
gradually reduced to zero.

IV. Concrusion

A theoretical study of the propagating modes in a
coaxial structure with reactive walls yields results simi-
lar to those derived from a study of the modes in a cor-
responding parallel-plate waveguide [5]. In general,
there are two surface waves and an infinity of wave-
guide modes. One of the two surface waves is the hybrid
TEM wave propagating down to zero frequency, while
the other goes critical and gets transformed into the
lowest order waveguide mode at certain frequencies
determined by structure parameters. It is possible to
proportion the waveguide suitably to effect uncontami-
nated mode propagation in the hybrid TEM surface
wave mode.
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