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Modes of Propagation in a Coaxial Waveguide

with Lossless Reactive Guiding Surfaces

RAJENDRA K. ARORA, MEMBER, IEEE, SRINIVASAN VIJAYARAGHAVAN,
AND R. MADHAVAN

Abstract—An analysis of the modes that can propagate in a co-
axial waveguide with Iossless reactive guidkg surfaces is presented.
The cases where both the surfaces are either inductive or capacitive
and the case where one of the surfaces is capacitive and the other is
inductive are discussed. The results show that, in general, there are

two surface waves and an infinite number of waveguide modes.
Whereas all the waveguide modes show the cut off phenomenon, the
surface waves may either propagate down to zero frequency or get
transformed into the lowest order waveguide mode at certain critical

frequencies determined by the structure parameters.

1. INTRODUCTION

A

FTER Barlow’s suggestion of screening a surface

waveguide [1 ]– [3 ], the first systematic study of

the modes existing in a parallel-plate waveguide

with inductive surfaces was made by Wait [4]. This was

extended by Arora and Vijayaraghavan [5] to cover the

cases where the supporting surfaces are both capacitive

or where one of them is inductive and the other is

capacitive. The present investigation of the modes of

propagation in a coaxial waveguide is similar to the one

already carried out for the parallel-plate waveguide and

covers identical guide-surface reactance possibilities.

It is well known that a thin coating of dielectric on a

conductor enhances the inductive reactance, and several

practical arrangements have been discussed by Barlow

[2], [3]. However, realization of a capacitive reactance

is less straightforward as such surfaces need thicker

dielectric coatings. Besides, the capacitive reactance

depends more strongly on the type of field that exists

over the surface. Despite these limitations, the concept

of surface impedance has proved to be a very useful one

and is widely used in the literature. In the analysis to

follow, it is assumed for simplicity that any desired

reactance, inductive or capacitive, can be realized, the

means of realization being secondary, and that the

reactance is constant whatever be the propagating mode

or modes.

Manuscript received March 2, 1971; revised April 30, 1971.
This work was supported by the U. S. Department of Commerce
under Research Project P. L.-48O.

R. K. Arora and S. Vijayaraghavan are with the Department of
Electronics and Communication Engineering, University of Roorkee,
Roorkee, U. P., India.

R. Madhavan was with the Department of Electronics and Com-
munication Engineering, University of Roorkee, Roorkee, U. P..
India. He is now with the Systems Engineering Division, Space
Science and Technology Centre, Trivandrum-1, India.

II. MODAL ANALYSIS

Consider an infinite coaxial waveguide with its axis

aligned along the z axis of the circular cylindrical co-

ordinate system defined by the coordinates r, 0, z. The

inner and outer guiding surfaces are r = a and r = b with

surface impedances Z. and Zb, respectively. The analysis

will be restricted to axially symmetric modes propagat-

ing along the positive z direction. Asymmetric modes

can, of course, be excited, but such modes are of the

hybrid type and there are added complexities in their

analysis. In particular, hybrid modes require the specifi-

cation of two values of surface reactance for each sur-

face [6]. In view of these complexities, such modes will

not be considered here but will form the subject of a

subsequent study. In the analysis to follow, a time de-

pendence of the form e@t will be implicit.

Consider first TM modes having field components E,,

_Ho, E., of which the components ET and E= can be ex-

pressed in terms of lZV by the equations

Es = (1/j(.w)a(rHe)/tv

E, = – (1/joJ@HII/13z (1)

while He itself can be determined by solving the wave

equation

132H0
—+!

–+%+@’’-$)Ho=o ‘2)

dHg

dr’ r dr

subject to the boundary conditions

E,/He = Z., atr=a

E,/He = – Zb, atr=b. (3)

In (2), k? = U2POC0.

The solution of (2) may be expressed in a series form

comprising all the possible modes of propagation:

Ho = ~ [Anll(uny) + B. KI(Z.L.Y) ]e–~~~’ (4)
n

where A. and B. are hitherto undetermined amplitude

constants, 11 and K1 denote modified Bessel functions of

the first order, ~n is the longitudinal phase constant, and

U. is the transverse propagation constant related to &

by the equation U.= V’&2 – k02. Real values of U.
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specify surface wave modes and their imaginary values

the waveguide modes.

Relations (4), (1), and (3), when combined, restrict

He to the form

z4nIo(z4na) — jwoZaIl(z4na)
+

1
K,(w’) e-~~”” (5)

unKo(z4na) + @eoZ.Kl(u.a)

with U. determined by the characteristic equation

Kl(una) ll(auna)
u% + jcoeoZ. ‘& + jw~i).zb

Ko(u.a) 10(cw.a)

Il(una) Kl(au.a)
Un – jueoZ. u. — j6@zb

10(una) Ko(wna)

Io(tina) Ko(auna)
——

IO(auna) Ko(u.a)
(6)

in which w = b/a, the ratio of the radii.

In a similar way it may be shown that the 138 com-

ponent of a TE field (components Ee, II,, IIJ in the

same structure can be expressed in a series form identi-

cal with that in (5), with eoZa replaced by l/~oZ@ and

@Zb by l/PiJZ& The characteristic equation for this case

is obtained from (6) by making the same substitutions

therein.

A. Inductively Reactive Surjaces

1) Transverse Magnetic Modes: Let the guiding sur-

faces be inductively reactive with Z. =iX., zb ‘ixb, and

X=, xb >0. Then (6) becomes

K,(U)
u–P—

I&d.J)
U–Q

KO(U) 10(W) Io(U) Ko(aU)

I,(U) K,(dl) = —II)(CYCT) Ko(u)
(7)

u+P— U+Q
Io(u) KO(CYU)

where U= u.a, P = cueoX=a, and Q = Woxba (all dimen-

sionless quantities). Real roots of (7) signify surface

wave modes and the imaginary roots the waveguide

modes.

Consider, first, the real roots of the equation. From

comparison with the corresponding parallel-plate prob-

lem [5], it maybe anticipated that this equation would

have two nontrivial real roots. A detailed graphical and

numerical analysis [7] shows that this indeed is so and

that one of these roots vanishes when the quantity P is

decreased below a certain critical value governed by the

ratio Q~P, indicating that the corresponding wave,

hereafter called type I surface wave, loses its surface

wave character at that critical value of P. The other

root, however, remains nonzero for all P except P = O

when it vanishes revealing that the surface wave mode,

to be called type II hereafter, cannot be supported by a

guide with perfectly conducting guide walls.

The critical value of P for a given Q/P ratio, at which

the type I wave loses its surface wave character, can be

easily deduced from the characteristic equation (7) by

making U approach zero. This yields the condition

+i-:=:(a’ -l). (8)

To find the imaginary roots of (7), set U =j V. On this

substitution, (7) takes the form

VJO(V) + PJI(V) VJo(aV) – QJ1(CYV)

VNO(V) + PN1(V) = i’lVo(aV) – QN1(.V)
- (9)

This equation is found to have an infinite number of

roots corresponding to an infinity of waveguide modes.

Of all these, the one that is found to merit attention is

the lowest order root, specifying, what is to be called in

future, the zero-order waveguide mode. This root is

found to vanish as the quantity P is increased above a

certain critical value. This critical condition, which may

be deduced by letting V tend to zero in (9), is found to

be the same as (8). The obvious conclusion to be drawn

is that this critical condition marks the transition be-

tween the surface wave mode of type I and the zero-

order waveguide mode.

Taking a= 2 as a typical value, (7) and (9) were

solved on the computer for the two real roots and the

lowest imaginary root in the range 0< V <T for various

values of P, with Q/P as a parameter. From the com-

puted values of the real roots, the dispersion curves

(/3a versus La) are plotted for the two surface waves in

Figs. 1 and 2, taking X.= <~o/~o, the characteristic

impedance of free space. This choice of X. makes

P = ka, and ~a is found through the relation &

= <Vz+ (ka)’.

Fig. 1 shows the dispersion curves of the surface wave

of type I (continuous lines) for various Q/P ratios. The

curves are found to terminate on the line ~a = ka or

when U becomes zero. The dotted lines are the disper-

sion curves for the zero-order waveguide mode obtained

from the roots of (9). Fig. 1 clearly shows the smooth

transition of the type I surface wave into the zero-order

waveguide mode at the critical frequencies determined

by the intersections of the @a= ka line with the dis-

persion curves. The points where the dotted curves

intersect the ka axis give the cutoff frequencies for the

zero-order mode. Fig. 2 displays the dispersion curves

for the surface wave mode of type II, showing that this

mode propagates down to zero frequency, unlike the

type I mode.

2) Transverse Electric Modes: An analysis of the char-

acteristic equation for TE modes (refer to (6) and the

following paragraph) reveals that the structure cannot

support TE surface waves but can support an infinity of

TE waveguide modes, all exhibiting the cutoff phe-

nomenon.

In practice, then, choosing an excitation to generate

only TM modes at a frequency such as to make the



212 ISEETRANSACTIONSON MICROWAVETHEORYANO TSCHNIQUK$ MARCH 1972

Pig. 1. Dispersion curves for type I surface wave mode (continuous
lines) and zero-order waveguide mode (dotted lines) for
Xc= (~,/e,)’l’ and different ratios Q/P.

surface wave of type I critical and proportioning the

guide so that all waveguide modes are cut off, one can

make only the type II surface wave mode propagate

without resorting to any special artifice for effecting

mode purity. This mode is the same as the hybrid TEM

wave of Barlow. Similar results were obtained for the

parallef-plate waveguide [5 ].

B. CaPacd~vely Reactive Surfaces

The results for the case when both surfaces are capaci-

tive are readily deduced from those for the case of induc-

tively reactive surfaces by applying the duality princi-

ple. It suffices to say that two TE surface waves and an

infinity of TE and TM wave guide modes exist and one

of the surface waves transforms with the zero-order TE

waveguide mode at a certain critical frequency deter-

mined by a relation analogous to (8).

C. One Surface Inductive and the Other Capacitive

The modal analysis for this case of oppositely reactive

guiding surfaces proceeds on the same lines as in the case

of inductively reactive surfaces. It is sufficient to men-

tion only the results of such an analysis [7].

At the outset one sees two possibilities, the first one

where the inner surface is inductive and the outer

capacitive and the second one where the inner surface is

capacitive and the outer inductive.

1) Inner Surface Inductive and Outer Swface Capaci-

tive: When the surface r = a has an inductive reactance

X= and the surface Y = b a capacitive reactance – Xb, one
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Fig. 2. Dispersion curves for type II surface wave mode
for X.= (pO/eo)ljz and different ratios Q/P.

TM and one TE surface wave can exist along with an

infinite number of TM and TE waveguide modes.

The TM surface wave propagates when l/P –a/Q

< (az – 1)/2 and goes over into the zero-order TM wave-

guide mode when l/P –cY/Q > (CY2– 1)/2, where P

= ueoXaa and Q = %JXba as before.

For TE modes the corresponding transition occurs

when a/Q’— I/P’ = (CZ2— 1)/2, where ‘P! =cepOa/Xa and

Q’ ‘@POa/xb. The mode has surface wave or waveguide

character depending, respectively, on whether a/Q’

– I/P’ is less than or greater than (a’ – 1)/2.

It may be noted that when Q/P< a for the TM case

or when Q1/P1 < a for the TE case, the corresponding

surface wave modes do not become critical. The TM

surface wave gets associated with the inductive surface

and the TE wave with the capacitive surface.

Fig. 3 shows the dispersion curve for the TM surface

wave in the structure. The figure clearly brings into

focus the critical behavior of the surface wave, and

especially the fact that the mode goes critical only for

Q/P ~a (a = 2 for the calculations). As before, the inter-

section of the pa= ka line with a dispersion curve gives

the critical frequency.

2) Inner Surface Capacitive and Outer Surface Induc-

t;ve: The results for this case follow from those derived

for the case discussed before through an application of

the duality principle. Accordingly, a TM surface wave

exists for ci/P – l/Q < (CY2– 1)/2 and goes into the wave
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Fig. 3. Dispersion curves for TM surface wave mode (continuous
lines) and zero-order waveguide mode (dotted lines) for
X= = &O/eO)U2 and different ratios Q/P when inner surface is
inductive and outer surface capacitive.

guide mode when the left-hand side of the inequality

exceeds the right-hand side. Similarly a TE surface

wave exists for I/P’ —a/Q’ < (az — 1)/2 and goes over

into a TE waveguide mode when the left-hand side ex-

ceeds the right-hand side. The surface waves do not be-

come critical for Q/P za (TM case) or Q’/P’ za (TE

case). Fig. 4 shows the dispersion curves of a TM sur-

face wave for this case and illustrates the fact that the

wave goes critical for Q/P <a= 2.

III. SURFACE WAVE FIELD PATTERNS FOR

INDUCTIVELY REACTIVE SURFACES

The electric field patterns in the 0 = constant plane

can be computed by solving the differential equation

Re (E.) dz

Re (E,) ‘z”
(lo)

From (5) and (1), the E. and E, components associated

with the two surface waves may be stated in the general

forms

E, =

E, =

213

Fig. 4. Dispersion curves for TM surface wave mode (continu-
ous lines) and zero-order waveguide mode (dotted lines) f?r
Xc= (po/co)l/2 and different ratios Q/P when Inner surface Is
capacitive and outer surface inductive.

where A is an amplitude constant and

.?JIo(u) + Pll(u)
c=

– UKO(U) + l’K,(Lq-
(llC)

with the appropriate value of u. Substituting (11) into

(10) and integrating, one obtains the expression for the

field lines in the 0 = constant plane:

ur [ll(zw) — CK1(ur) ] sin @z = constant. (12)

The individual patterns for the type I and type 11

waves are obtained by substituting the appropriate

eigenvalues in (12).

For the type I wave (designated by subscript 1), one

finds that the E. component is a maximum at a surface

r =rm for which

(13)

Fig. 5 shows the type I wave field which is seen to

bear a close resemblance to the lowest order TM mode

in a converitional coaxial waveguide with perfectly

conducting walls.

For the type II wave (designated by subscript 2),

E.= Oat a surfacer= m, for which

Io(u,m,)
c=c, =–

KO(uzmJ
(14)

Fig. 6 shows the field pattern for this wave and one

observes that this mode is nothing but the hybrid TEM
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Fig. 5. Electric field pattern for type I surface wave mode.

wave of Barlow. In fact, one can trace the transition of

the surface wave mode of type I into the lowest order

TM waveguide mode and that of the type II surface

wave mode into the TEM wave of a coaxial guide with

perfectly conducting walls as the surface reactance are

gradually reduced to zero.

IV. CONCLUSION

A theoretical study of the propagating modes in a

coaxial structure with reactive walls yields results simi-

lar to those derived from a study of the modes in a cor-

responding parallel-plate waveguide [5]. In general,

there are two surface waves and an infinity of wave-

guide modes. One of the two surface waves is the hybrid

TEM wave propagating down to zero frequency, while

the other goes critical and gets transformed into the

lowest order waveguide mode at certain frequencies

determined by structure parameters. It is possible to

proportion the waveguide suitably to effect uncontami-

nated mode propagation in the hybrid TEM surface

wave mode.
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Fig. 6. Electric field pattern for type II surface wave mode.
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